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Abstract. This paper gives an overview of the radiative transfer code SHARM based on the method of 
spherical harmonics. Being as rigorous and accurate as DISORT, code SHARM offers advantages in the 
speed of calculations and user convenience. It handles multiple wavelengths in one run and performs 
simultaneous calculations for different solar zenith angles (SZA), view zenith angles (VZA) and view 
azimuths. The Rayleigh scattering is automatically included as a function of wavelength, surface 
elevation and selected vertical profile of one of the standard atmospheric models. The Delta-M method 
is implemented for calculations with highly anisotropic phase functions. SHARM has several built-in 
models of the land and wind-ruffled water surface bi-directional reflectance that are most widely used 
in the research and satellite data processing. The paper also describes a modification of code SHARM 
with the built-in Mie algorithm designed for calculations with spherical aerosols. 
 
 
1. Introduction 
 

In the past several years we have witnessed a dramatic expansion of knowledge on our living 
environment coming from operational ground based and space-borne remote sensing systems. For 
example, MODIS1-2 and MISR3 are instruments of a new generation conducting global operational 
monitoring of a large number of atmospheric and surface parameters from space. The ground-based 
Aerosol Robotic Network4 (AERONET) provides characterization of atmospheric column aerosol and 
water vapor for more than 170 locations worldwide. These and other sources of information 
dramatically enhance our capabilities to accurately model solar radiative transfer in the Earth-
atmosphere system, and improve our understanding of the radiative budget and climate forcing factors 
of our planet. Such a research needs rigorous, fast and user convenient radiative transfer (RT) codes that 
can be directly used with the aerosol and surface reflectance models and data types available from the 
operational networks and space borne global observing systems. 

Presently there are several publicly available RT codes for the atmospheric and land remote 
sensing communities: the most broadly used are 1D codes DISORT5 and 6S6, and 3D code SHDOM7. 
We are presenting a new version of code SHARM8-9 that implements method of spherical harmonics 
(MSH). Being as rigorous and accurate as DISORT, code SHARM offers advantages in speed of 
calculations and user convenience. This paper describes the latest version of SHARM upgraded with 
Delta-M10 method, and a modification of code combined with MIE algorithm (SHARM-Mie) that is 
particularly convenient for the multi-wavelength calculations with spherical aerosols. Another code 
SHARM-3D designed for 3D calculations over inhomogeneous surfaces is described in the companion 
paper11. 
 
2. Overview 

Code SHARM solves the monochromatic unpolarized plane-parallel 1D problem with vertically 
non-uniform atmosphere and several broadly used models of land/ocean surface bi-directional 
reflectance factor (BRF). It calculates radiance and fluxes at the interfaces of atmospheric layers. When 
the surface is Lambertian, it also calculates the path radiance, upward atmospheric transmittance, and 
spherical albedo of the atmosphere. SHARM handles multiple wavelengths in one run, and performs 
simultaneous calculations for different solar zenith angles (SZA), view zenith angles (VZA), and view 
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azimuths. The molecular scattering is added automatically according to the wavelength, surface height 
above the sea level, and selected atmospheric profile. The details of MSH algorithm alone with the 
built-in models are given in the Appendix. 

The code comes in package with program Phase that computes Legendre expansion coefficients of 
aerosol/cloud phase function ( )(γχ ), and automatically normalizes it. Phase uses rational spline 
interpolation to compute )(γχ  in the quadrature angles required for Legendre expansion, and in the 
arbitrary directions for the single scattering calculations. The rational spline provides an accurate 
smooth interpolation for the most anisotropic phase functions, where the conventional cubic spline often 
develops an oscillating error. The current version of Phase calculates up to 2000 non-zero Legendre 
coefficients using the high order Lobatto quadrature. 
 The input data are arranged in three files: 
Configuration file (config.par) defines wavelengths, the order of MSH, the incidence-view geometry, 
the file names of input atmospheric and surface properties, and governs printing of the results. 
Atmospheric Properties file describes the model of atmosphere, and optical properties of aerosols or 
clouds. In code SHARM, the input includes optical thickness (∆τ), single scattering albedo (ω), and 
scattering function for each atmospheric layer. The atmospheric gaseous absorption is not automatically 
included in this version, and should be specified by the user if needed. Surface Properties file describes 
the model and parameters of surface reflectance. The details on parameters and input format are 
documented in “SHARM Manual”. 

Another code SHARM-Mie is an integrated package that combines Mie calculations for the 
wavelengths of interest, automatic Legendre expansion of phase functions, and RT calculations with 
code SHARM. Aerosols are represented by polydisperse spherical particles with bi-modal lognormal 
size distribution or generic-form size distribution. The aerosol properties are assumed to be constant 
with altitude but the aerosol concentration can vary according to the specified vertical profile. Because 
the Mie calculations carry the main computational load, this approach is chosen to keep the computing 
time relatively low. On the other hand, the resulting atmospheric model is quite realistic and well 
suitable for the remote sensing studies of atmospheric aerosol and surface reflectance. The 
monodisperse Mie calculations are performed by the code MIEnoP of W. Wiscombe12 translated into C 
language. The integration over size distribution is performed using Simpson’s quadrature with 2001 
points. The integration limits are either given by the min and max radii of the generic-form size 
distribution, or set to minr =0.05 µm and maxr =15 µm for the bi-modal distribution. The input differs 
from code SHARM in the file of Atmospheric Properties. Instead of optical parameters {∆τ, ω, )(γχ }, 
the user should specify relative vertical profile of aerosol and its microphysical properties, namely 
spectral index of refraction and particle size distribution. 

The mentioned codes share a common library of files and are written in C language with C++ 
features. 
 
  
3. Built-in Models 

3.1 Geometric Model 

SHARM uses plane-parallel model of the atmosphere divided into K homogeneous layers. Each 
layer k is characterized by its optical thickness 1−−=∆ kkk τττ , single scattering albedo kω , and 
scattering function )(γχ k . The total optical thickness and atmospheric layers are counted from the top 
of the atmosphere (TOA). In opposite, the altitude of interfaces (hi) is counted from the ground level, in 
agreement with the standard atmospheric profiles of temperature and pressure. 
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 In the accepted coordinate system, solar zenith angle 0θ  (SZA) changes from 0 to 90o, and view 
zenith angle θ (VZA) changes in the ranges 90-180o ( θµ cos= <0) for upward directions (view 
geometry from space), and 0-90o (µ>0) for downward directions (ground–based observations of sky 
radiance). The relative azimuth is calculated clockwise from the principal plane: it is defined so that 

00=ϕ  for the forward scattering, and 0180=ϕ  for the back-scattering direction. 
 
3.2 Rayleigh Scattering 

The scattering function of air is considered to be purely Rayleigh. It does not account for a slight 
asymmetry caused by depolarization. The vertical profile of molecular optical thickness is calculated as: 

∫ ′′′=
z

m zdzNzz
0
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where σ is a Rayleigh scattering cross section per molecule, 
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air molecules at altitude z, and 25.1013=sP  mb, 15.273=sT  K are the standard pressure and 
temperature. The vertical profile of pressure and temperature can be selected from six standard 
atmospheric profiles13 (Tropical, Midlatitude Summer, Midlatitude Winter, SubArctic Summer, 
SubArctic Winter, 1976 US Standard). The integral over altitude is evaluated with the gaussian 
quadrature. 
 The Rayleigh scattering cross section is calculated with the algorithm of Bodhain et al.14, which 
has a uniformly high accuracy across the spectral range from UV to the shortwave IR. 
 
3.3 Surface BRF Models 

 Three broadly recognized BRF models of land surface reflectance are built in code SHARM 
(SHARM-Mie): Rahman-Pinty-Verstraete (RPV)15 model, modified RPV (MRPV)16 model, and a Li 
Sparse – Ross Thick reciprocal (LSRT)17 model. The LSRT and MRPV models are used in the 
operational land reflectance algorithms of MODIS and MISR, respectively. All of these models are 
reciprocal and rotationally invariant, i.e. they depend only on relative azimuth, and are described by 
three parameters. 
 The ocean surface reflectance can be modeled with either azimuthally-independent model of 
Nakajima and Tanaka18 (NT), or with the Cox and Munk19 model with Grams-Charlier expansion (CM). 
Both models include bi-directional wave-shadowing factor of Nakajima and Tanaka18. The NT model 
depends only on the wind speed, whereas CM model additionally depends on the wind direction. The 
details of surface BRF models are given in Appendix B. 
 
4. Accuracy and Convergence 
 
 Code SHARM was extensively validated8,20 against code DISORT and also indirectly tested in 
the atmospheric correction of airborne measurements, e.g., over the dark ocean21. The most important 
parameter that controls the accuracy of solution is the order of MSH (parameter nb) specified by the 
user. In essence, exactly nb coefficients of phase function are used in the multiple scattering 
calculations. The single-scattered radiance in SHARM is calculated using an exact formula and does not 
depend on nb. The solution for the multiple scattering converges to the true one at the increase of nb, 
however the computing time also grows approximately as 3nb . 
 Generally, the more asymmetric phase function, the higher nb is required to achieve a given 
accuracy. For typical continental/marine aerosols, the relative accuracy of 0.2-0.3% is achieved at 
nb=24-36 in radiance calculations for the range of view/solar zenith angles up to 75-80o. The value of 
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nb=128 ensures the accuracy of ≈0.02%20. Generally, the convergence slows with the increase of zenith 
angle. Therefore, the higher orders nb should be used for high solar or view zenith angles to achieve the 
same relative accuracy. 

For calculations with strongly asymmetric phase functions typical of clouds, with large forward 
scattering peak, even high orders of MSH may be insufficient. For these cases, we implemented the 
Delta-M method10 that achieves the accuracy of about 1% at relatively low orders of MSH, nb=32-64, 
except for the aureole region and some transitional area around it (see also study22). As an example, 
Figure 1 shows a convergence of SHARM with and without Delta-M method for the case of cirrus 
cloud over anisotropic surface. 

The above discussion on the accuracy and convergence pertains to the radiance calculations 
(specific intensity). Flux calculations require considerably smaller orders of MSH. For example, fluxes 
at nb=12-24 are typically accurate to the fourth significant digit. 

At typical orders of MSH (nb=24-48), the runtime of code SHARM-Mie is almost entirely 
defined by Mie calculations. In order to minimize the runtime, only nb required coefficients of 
Legendre expansion are calculated each time. 

 
Conclusion 

This paper gave an overview of code SHARM (SHARM-Mie) which is a rigorous yet rather fast 
code compared to other similar codes. SHARM is user-friendly due to built-in models of Rayleigh 
scattering and land/water surface reflectance, and its capability to perform simultaneous calculations for 
different illumination-view geometries as well as for the multiple wavelengths in one run. Currently we 
are integrating code SHARM with the Interpolation and Profile Correction (IPC) method23 that will 
automatically include atmospheric gaseous absorption and will allow calculations with an arbitrary 
spectral resolution, from monochromatic to the shortwave broadband. The current version of code 
SHARM (SHARM-Mie, SHARM-3D) is available for public use via 
ftp://ltpftp.gsfc.nasa.gov/projects/asrvn/. 
 

APPENDIX 
 
A. Method of Spherical Harmonics 

The diffuse radiance ),;( ϕµτI  is a solution to the following boundary-value problem: 

∂τ
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Here, ρ is surface BRF (unitless), and λπS  is extraterrestrial spectral solar irradiance. The scattering 

function is normalized to unity, ∫ =
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To solve problem (1), the scattering function is expanded into Legendre polynomial series 
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MSH, defines the accuracy of expansion and of the solution for multiple scattering.   
The application of an addition theorem for Legendre polynomials, and expansion of radiance 

into spherical harmonics transforms integro-differential equation (1) into the system of linear 
differential equations 
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In (3), Yk
m(µ)=

(k − m)!
(k + m)!

Pk
m(µ) are the normalized associated Legendre polynomials. Explicit 

expressions for matrices Am and Cm and vector  
r 
f m  can be found in Karp et al.24, Muldashev et al.8. We 

use triangular system of equations (2), and the order of MSH 1+− mLm  is even for all m. 
 The boundary conditions at the top and bottom of the atmosphere are expressed for mth 
azimuthal harmonic in the form of Marshak as follows25,9: 
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m
odϕr  and m

evϕr  are vectors consisting of odd and even elements of vector mϕr , and I is an identity matrix. 
Matrix mG  and a method for its calculation can be found in Dave25. m

odN  and m
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where δm=0 if m is even, and δm=1 if m is odd. The elements of vector )(µ′mQ
r

 are calculated from 
azimuthal harmonics of BRF: 
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Previously9 we used analytical formulas to integrate equations (5). Our further research with the BRF 
models built in SHARM showed that the use of Gaussian quadrature allows faster integration with an 

automatic selection of the quadrature order ( 10
2
+≈

nb ). 
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A.1 Solution for Radiance 

Solving system (2), (4) for each m=0, 1, ... for vectors )(τϕ mr  allows to compute diffuse 
radiance on the next step by summing series (3). Harmonics Im(τ,µ)  rapidly decrease in magnitude 
with increasing m, which terminates azimuthal series at some 0M . 
 Method of solution is an analytical integration of Eq. (2) within each atmospheric layer where 
atmospheric optical properties are constant (and hence matrices mA , mC , and vector mf

r
). The 

singular-value decomposition of matrix Bm =(Cm)−1 Am  rigorously transforms the system of linear 
differential equations into the system of linear algebraic equations in K atmospheric layers with a block 
matrix,24 which is successfully solved by a generalized Gauss elimination method. Further, the solution 
is smoothed with the correction function method8, which compensates errors due to truncation of the 
system of MSH, and due to an approximate form of the boundary conditions. This smoothing method 
also calculates the single-scattered radiance exactly regardless of the order of approximation of MSH. 

If surface is Lambertian, code SHARM separately computes atmospheric path radiance D, 
which is a solution with the black surface, surface irradiance )( 00 µπE , upward atmospheric 
transmittance )(µT  and spherical albedo of atmosphere 0c . The total radiance is found using a well-
known formula of Chandrasekhar26, 
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A.2 Delta-M Method 

With the growth of a particle size, the scattered light concentrates more and more in the narrow 
peak in the forward scattering direction. Accurate Legendre expansion of such functions requires 
literally thousands of terms. In these conditions, the convergence of solution with increase of the order 
of MSH is very slow, which explains why RT calculations for cloudy atmospheres have always been 
very challenging. 
 To accelerate calculations, different approximations were developed22. In code SHARM, we 
have implemented the Delta-M method10, which approximates the forward peak with δ-function, 
 )()1()0(2)( * γχδγχ FF −+= ,  (7) 

where F is a fraction of forward scattering. Delta-M method automatically conserves the first N 
moments of expansion: 
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with truncated phase function )(* γχ  and scaled optical thickness and single scattering albedo 
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The new equation has the same form as the original one, only with scaled parameters and modified 
single-scattering source function. 

Figure 1 shows convergence of code SHARM with and without Delta-M method for 
calculations with the phase function of cirrus cloud with the particle modal diameter 10 µm. The 
accurate result corresponds to the converged high order MSH solution (nb=512). Except for the aureole 
region and transitional zone of about 20o, the low-order nb=32-48 Delta-M solution has an accuracy of 
about 1-2%. 
 
B. Surface BRF Models 

Because there are different definitions of angles in the literature, and even differences in the 
formulation of BRF models are not exceptions, we consider it worthwhile to give analytical expressions 
that are coded in SHARM. For convenience of notations, the cosine of zenith angle below is always 
positive, and the upward view directions will be indicated as (-µ). 

B.1 Land: RPV and MRPV models 

 The RPV model depends on three parameters ( 0ρ , k, α): 
 )()()();;( 000 ραρϕµµρ HFkM=− , (L-1) 
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where γ  is angle of scattering,  
 )cos(11cos 0

22
00 ϕϕµµµµγ −−−+−= , (L-3)  

and 

 )cos(2 00
2

0
2 ϕϕθθθθ −++= tgtgtgtgG . (L-4) 

Note that the hot spot lies in the direction of backscattering, πϕϕ =− 0 . 
 Usually, the Minnaert’s exponent k is less than 1. It means that at small values of µ, 0µ , the 
total BRF may become unphysically large, and surface albedo at high SZA may exceed 1. As a remedy, 
our algorithm sets the low limit of µ, 0µ  in BRF calculations to 0.03. Although this approach is not 
rigorous, it provides stable solution for the common cases. 
 In the MRPV model, the term )(αF  is substituted by )(αF = )cosexp( γα × . This modification 
yields a nearly linear expression for the BRF model parameters after logarithmic transformation. 

 
B.2 Land: Linear LSRT  model 

This model is represented by a sum of Lambertian, geometric-optics and volume scattering 
terms: 

 ),,(),,(),,( 000 ϕµµϕµµϕµµρ vvgogoL fkfkk ++=− . (L-5) 

The kernel functions are given by the following expressions: 
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The primed angles ( 0θ ′ , θ ′ ) are obtained by scaling θθ tg
r
btg =′ . Note that γ ′cos  in (L-7) and G′  in 

(L-9) are calculated for primed angles ( 0θ ′ , θ ′ ) using equations (L-3) and (L-4), respectively.  
The ratio of structural parameters is fixed17 (h/b=2 and b/r = 1). Thus, the functions vf , gof  

depend on angles only, and BRF is defined by three coefficients { vgoL kkk ,, }. 
It is important to keep in mind that the functions vf , gof  take both positive and negative values. 

Our experience with processing MISR measurements27 shows that the best-fit weights gok  and vk  for 
different landcover types are often negative, although the resulting BRF and surface albedo remain 
positive. For this reason, different terms of this model should only be considered as mathematical 
functions rather than physical components of the surface reflectance. Also, one needs to exercise 
caution with this model at high zenith angles larger than 800, when the BRF may become negative or, in 
the contrary, grow very fast28. 
 
B.3 Ocean: Azimuthally-Independent Model of Nakajima and Tanaka  (NT) 

Following Nakajima and Tanaka18, the reflection coefficient is expressed as follows: 
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where FrR  is Fresnel reflectance for unpolarized radiance, )( nP µ  is the probability density function of 
wave slope distribution, and S is the wave shadowing factor. The refractive index of water required to 
compute FrR  is obtained by spline interpolation from spectral data of Hale and Querry29. 

The probability density function of slope distribution is given by 
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where 2σ =0.00534u, and u [m/s] is wind speed 10 meters above the water surface. Following Gordon 
and Wang30, 
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 Finally, the wave-shadowing factor is written as: 
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 is the probability integral for the normal distribution. 

For compliance with the general form of the boundary condition (1b), the BRF is written as: 

),,(),,( ϕϕµµ
µ
πϕϕµµρ ′−−′
′

=′−−′ R . 

 
B.4 Cox-Munk Model with Gram-Charlier Expansion (CoxMunk) 

 Let us consider the right-handed system of coordinates (X,Y,Z) centered in the observation point 
O. Vector OY lies in the principal plane and points in the opposite to the Sun direction, and vector OX is 
perpendicular to the principal plane. The wave slope (facet) has two components: 

 βαtgXZZ x sin/ =∂∂= =
0

sinsin
µµ
ϕθ

+
, βαtgYZZ y cos/ =∂∂= =

0

0sincossin
µµ

θϕθ
+

−
, (O-3)    

where α is the azimuth of ascent (clockwise from the sun), and β is the tilt. 
If the distribution of the slope components depends on the wind direction, let us rotate the 

coordinate system about axis OZ by the angle 0ϕϕϕ −=∆ Windw  clockwise. This gives the new 
coordinate system ( ZYX ′′′ ,, ), where the axis OY ′  is aligned with the up-wind direction. In the new 
coordinates, the slopes (O-3) become: 
 wxwyyu ZZZZ ϕϕ ∆+∆== ′ sincos , wxwyxc ZZZZ ϕϕ ∆+∆−== ′ cossin , (O-4)  
and the slope probability density function can now be written as: 

 GCP
ncu

n }
2

exp{
2

1)(
22

3

ηξ
µσπσ

µ +
−= , uuZ ση /= , ccZ σξ /= . (O-5) 

The subscripts u and c refer to the up-wind and cross-wind components, and the term GC denotes 
Gram-Charlier expansion19. 

In code SHARM, the diffuse reflected radiance is always computed with isotropic NT model, 
and the direct reflected radiance can be computed with either NT model or the described CoxMunk 
model. In the last case, the two models are linked by the “energy conservation” condition 22

CU σσ + = 
2
NTσ =0.00534u. In the experiments, Cox and Munk observed the range of anisotropy cu σσ / =1-1.8, 

with an average value of 1.34. Currently, SHARM uses 2
Uσ = 0.6 2

NTσ , 2
Cσ = 0.4 2

NTσ , so CU σσ / =1.5. 
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Figure 1. Convergence of code SHARM (left) and SHARM with Delta-M method (right) for 

cirrus cloud. The results are shown as a relative error (%) of SHARM radiance for different 
orders of MSH calculated with respect to the solution with nb=512. Calculations were performed 
for τ=0.8 and SZA=60o. The solid and dashed lines represent the relative azimuth of 0o and 180o 
respectively. The negative and positive values on the abscissa axis relate to the upward radiance at 
the top of the atmosphere, and to the diffuse sky radiance incident on surface, respectively. The 
cirrus cloud phase function at λ=0.66 µm corresponds to 10 µm ice particles. 

 


